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Coherent structures in strongly interacting many-body systems: 
I. Derivation of dynamics 
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t Department of Physics, University of Alberta, Edmonton,  Alberta, Canada  T6G 2J1 
i Department o f  Physics, Unibersity of Warwick, Coventry CV4 7AL. U K  

Received 21 April 1989 

Abstract. Numerous examples in condensed matter physics possess a n  effective Hamil-  
tonian structure involving two-body anharmonic interactions between elementary excita- 
tions. The effective second-quantised Hamiltonian used to model these systems is essentially 
of the same form except for the particulars of the interaction parameters a n d  the statistics 
of the particles which are  interacting. In this paper  we investigate such systems in the limit 
of strongly anharmonic interactions which may possibly lead to symmetry breaking. We 
introduce quantum field operators a n d  calculate their equations of motion. The interaction 
coefficients are  expanded in a Taylor series about  the critical mode to  second order  to 
illustrate the method, but we give the expansion to infinite order  for completeness. It is 
demonstrated that  both in first a n d  second order  t he  equations of motion are reduced to 
a system of highly non-linear coupled partial differential equations (PDE) for the field 
operator.  We show that the form of our  second-order equation is exact d u e  to renormalisa- 
tion theory, in the case where the Hamiltonian coefficients represent operators in real space 
which are  isotropic, and  incorporates symmetries and  topologies which would appea r  in 
an  expansion to infinite order.  This special situation arises in a very wide range of physical 
examples. These equations can be solved exactly using a particular ansatz in conjunction 
with recent mathematical  developments in the field of non-linear analysis. In  particular, 
the method of symmetry reduction for PDE provides a complete set of symmetry variables 
for the type of equations used in o u r  study. 

1 .  Introduction 

The method of second quantisation (Berezin 1966, Judd 1967) is not only a very 
convenient and succinct approach to the study of many-particle systems but a rep- 
resentation in which elementary excitations appear naturally (Nakajima et a1 1980). 
To a first approximation it also diagonalises Hamiltonians of numerous many-particle 
systems when interactions are weak. Interactions between the resulting quasiparticles 
can be readily incorporated using standard perturbation methods developed in quantum 
mechanics such as Green function techniques (Economu 19831, the deployment of 
Feynmann diagrams (Fetter and Walecka 1971) or projection operators (Stevens 1976). 
This often leads to modified dispersion relations for the quasiparticles with effective 
masses which differ from those of free particles as a result of the emergence of some 
sort of self-consistent potential to which the particles are subjected. However, when 
interparticle interactions are sufficiently strong, a new phenomenon often occurs which 
cannot be treated perturbatively with elementary excitations used as a zeroth-order 
approximation, e.g. the harmonic approximation. The new phenomenon is the so-called 
symmetry breaking effect (Anderson 1984, Makhankov and Fedyanin 1984) whereby 
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the new degenerate ground state of the total Hamiltonian is not invariant with respect 
to an application of one or more symmetry operations of the total Hamiltonian, e.g. 
parity or gauge invariance. Such systems exhibit extraordinary properties such as Bose 
condensation, long-range order, the existence of soft (Goldstone) modes and  coherence 
as can be seen in such phenomena as superconductivity, superfluidity or  structural 
phase transitions, to name but a few. 

In this paper we intend to present a unified approach to a many-particle problem 
near a critical point. By a critical point we are to understand the occurrence of a 
singularity in the thermodynamic potential of the system ( M a  1976). In S 2 we give a 
very wide range of physically important examples and show that all of them lead to 
the same form of effective Hamiltonian. This, of course, does not mean that all these 
systems possess identical physical states but only that a single mathematical procedure 
can be adopted to solve these problems. In 8 3 we derive an  equation of motion for 
the field operator using the effective Hamiltonian and  analyse the form of the interac- 
tions. The two sections which follow this are devoted to deriving two general cases 
of non-linear equations of motion. In the first we expand to first order and in the 
second we include second order which will incorporate those cases where the first-order 
coefficients vanish identically. 

Our method differs markedly from standard perturbation approaches due to the 
fact that in the critical region anharmonic terms dominate and drive the system. As 
a consequence the equations of motion we find are highly non-linear and  perturbative 
expansions are not adequate. In this paper we construct these non-linear equations. 
In  a second paper we will treat these equations classically and  solve them analytically. 
Subsequently quantum corrections will be added to the classical solutions, following 
standard methods due to Jackiw (1977), and  correspond either to the elementary 
excitations of the system or  scattering states when stability is lost. 

2. Examples of many-particle Hamiltonians 

2.1. Conduction electrons in a metal 

One of the simplest models which is used to understand the behaviour of conduction 
electrons in a metal is a system of N spinless electrons in unit volume interacting by 
means of Coulombic electrostatic repulsion in a uniform positive background to take 
account of the overall charge neutrality of the metal. The Hamiltonian for this model, 
when second quantised using a plane wave complete set, takes the form (Taylor 1970, 
Callaway 1976) 

where &k represents the kinetic energy of the electrons and  is given by 

The interaction strength 2.rre2/q' is the Fourier transform of the interparticle interaction 
e'/ r with r = Ir, - r2/ and the q = 0 term has been cancelled by the corresponding terms 
for the uniform positive background. A Hamiltonian of this form may be obtained 
for electrons moving in the fields of fixed nuclei and interacting via a screened Coulomb 



Strongly interacting many-body systems: I 4879 

interaction (Raimes 1963, 1972, Dixon 1978) (which may be obtained by unitary 
transformation from a bare Coulomb two-body operator). 

2.2. Electrons in an atom 

Electrons interacting not only with each other but with only one nucleus provides an  
interesting special case of another system with an  effective Hamiltonian of the form 
in ( 1 ) .  However, a plane wave basis is not the most appropriate one to use for the 
bound states of an atom! In this case we would probably use a complete set of 
single-particle orbital angular momentum eigenstates, each with spin labels and  the 
Hamiltonian resulting would have the form 

where each of the subscripts a, P, y, 6 refers to one set of four quantum numbers n, 
1, ml ,  m, (Judd 1967) and  

E,  = ( a  lg-qa).  
In  the second term of (2)  the coefficient VuPva would be defined by 

As the Coulomb interaction conserves orbital angular momentum just as it does linear 
momentum in ( l ) ,  the labels on the second quantised operators (and  indeed VOpva) 
may be rewritten to make this more explicit. 

2.3. The electron-phonon Hamiltonian 

An analysis of the interactions between electrons and phonons is fraught with difficulties 
and is extremely complicated but there is a simple model, due to Frohlich (Taylor 
1970), which we can use to describe such systems. In this model the ions are assumed 
to interact with one another and  with electrons via a short-range screened potential. 
The electrons, on the other hand, are considered to be essentially independent fermions 
and  this leads to a Hamiltonian of the form 

The first term in (3) describes the electrons, the second the phonons and the third the 
interaction between them. To obtain this specific form of interaction certain simplifying 
assumptions are made, e.g. that the phonon spectrum is isotropic and  that only 
longitudinal modes enter the third term. A canonical transformation exp( s), followed 
by truncation of the series in s by omitting terms of order s3 and higher, results in 
another effective Hamiltonian H $  given by (Taylor 1970) 

HYA=C &kCkCk+C hwqb;bq+ 1 Wb,kqC;+qCk-qCkCk 
k 4 k ,k  q 

+ (other terms involbing only two-body electron-electron operators) 
(4) 
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where 

Wkvq = IMq12hW4/[(&k - &k-g)'-(h@q)*]. 

In a recent paper (Dixon and  Wardlaw 1986), concerned with the calculation of 
crystal fields in metals, it was shown that the total electrostatic potential energy of a 
system of interacting electrons and ions (not rigid), all with the same nuclear charge 
Z ) e ) ,  may be written in the form 

where n is a constant self-energy and pk is a one-body operator defined by 

Pk = exp(-ik r , )  - .Z 2 exp(-ik - R , )  
I n 

and r, ,  R, are the position vectors of the electrons and ions, respectively. If the first 
term of Pk is second quantised and the second expanded about the equilibrium positions 
of the ions R: , retaining only the terms linear in the nuclear displacements U ( R n ) ,  
then the effective Hamiltonian, when U(&) is written in the usual way using Bose 
operators, takes the form 

H4 = c b t b k  ( A u k  + f + c & A  c 7; c k  + Vk,l,m c c T c m c k + ( -  m 
k k k.1.m. n 

With the exception of the electron-electron term in ( 5 )  this is of exactly the same 
form as the Frohlich Hamiltonian in (3 ) .  As is well known, under certain circumstances 
electrons can become trapped in the potential generated by lattice displacements 
leading to the formation of a polaron. Notice again that the electronic component of 
H $  is of the same form as (1). 

2.4. The BCS Hamiltonian 

The Hamiltonian in (4) may be  used as a starting point for the derivation of the BCS 

Hamiltonian of superconductivity. In special types of materials it is well known that 
the effective two-body operator in (4), i.e. the term in Wkk,,, and  purely electron-electron 
terms, provide a net attractive potential interaction leading to the formation of Cooper 
pairs in the ground state provided the temperature and  external fields d o  not exceed 
certain critical values. The ground state is separated in energy from the excited 
continuum states by what can be a large energy gap, which is a function of these fields. 
The possibility of coexistence between normal and  superconducting phases leads to 
the formation of domain walls which are solutions of the Landau-Ginzburg equation. 
Moreover, similarly to superfluids, the superconducting state exhibits vorticity which 
is required to bring about the Meissner effect. Under these circumstances 

where v k k '  = -2 W-k,k,k'-k - u k k '  and the arrow subscripts describe the spin component 
for the particular wavevector k. ukk' is a screened Coulomb repulsion term similar to 
the electron-electron terms in braces in (4). Notice again the similarity of Hscs to 
our first Hamiltonian in (1). 
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2.5. Superfluidity 

A very similar Hamiltonian to that in (1)  appears in the theory of liquid 4He where 
the atoms are treated as a system of interacting bosons with a Hamiltonian of the form 

where = h2kk ' /2m and V, is a Fourier transform of a short-range potential and b ;  
creates a boson from the vacuum. By assuming that there was a macroscopic number 
of particles in the zero-momentum state Bogoliubov showed how excitations arise as 
a modification of the single-particle excitation spectrum and a dispersion relation of 
the form 

hWk =z &; + 2EkN~j v,, 
arises, where No is the number of particles in the zero-momentum state (Taylor 1970). 
It can be further shown that below a critical temperature a macroscopic number of 
quasiparticles undergo Bose condensation into a superfluid phase. 

2.6. Anharmonic lattice vibrations 

A different physical example which exhibits an  effective Hamiltonian like (1) is the 
simple case of a strongly anharmonic lattice consisting of identical masses M which 
has as its Hamiltonian 

where { r,} includes all instantaneous positions of ion sites. The anharmonic potential 
V ( { r , } )  may be expanded, in the usual way, in a Taylor series about an  equilibrium 
position. Subsequent application of second quantisation results in a rather complicated 
form for the Hamiltonian. However, in the vicinity of a structural phase transition it 
is sufficient to consider the following effective Hamiltonian (Bruce and  Cowley 1981, 
Aubry 1975) 

In (9),  q, q' ,  q" and q"' are reciprocal lattice vectors, s, s', s", s"' are polarisation vectors 
and  i , j ,  k, 1 label their components. The symbol V$4,,4t,. is the Fourier transform of 
the fourth derivative of the original potential at the equilibrium position (Taylor 1970) 
and  A is a function to preserve linear momentum in the terms of the summation. The 
squares of the angular frequencies CO:.< are the eigenvalues of the dynamical matrix. 
The striking similarity of (9) to (1 1 is again quite apparent. 

A particular mode of lattice vibration labelled ko in the critical region will pre- 
dominantly determine both the dynamical and  static properties of the crystal lattice. 
It has been referred to as a 'soft mode' and  is characterised by a vanishing frequency 
as the critical temperature is approached, i.e. W k o + O  as T +  T,. Depending on the 
particular regime of parameters it may either be a so-called 'kink' or a 'bump', both 
of which are solutions of non-linear PDE (Aubry 1975). 
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2.7. Spin waves 

Another example of the type of system we wish to study is provided by the Heisenberg 
model of a ferromagnet (White 1983) in which the interaction between spins is assumed 
to be a scalar type and  

H7 = -? 4 l )  ( oo+c J l l , s ( I f ) )  (10) 
I '  

where J,,, is an  interaction constant, being a scalar function of the vectorial positions 
of the spin sites 1, l ' ,  and wo is proportional to an  externally applied magnetic field. 
Boson operators are then introduced using the Holstein-Primakoff transformation and  
if the expectation values of the boson number operators ni are assumed unity, a 
diagonal operator 

results where 

w,=wo+2h J , I , s i n 2 [ i q .  ( l - l ' ) ] .  
I '  

However, when the operators n, have an  expectation value close to but not actually 
unity, the magnons described by (1 1) begin to interact and the effective Hamiltonian 
resulting from (10) becomes 

h 2  
H S )  = E,,+C hw,b:b, +- C ( J , , +  Jq.+p - 2 J , ~ + , ~ , ) 6 ~ ~ , b ~ ~ + , 6 , . b ,  (12)  

4 2 N  4.4',P 

where it has been assumed that J l , , =  J , _ , . .  

2.8. The Frohlich biological model 

Frohlich (1968) proposed a model intended to describe the transition to a metabolic 
state occurring in living cells. The Hamiltonian put forward by Wu and  Austin (1977) 
involves a membrane's dipolar modes described by operators ( a : ,  a,),  a heat bath's 
modes (b: ,  b , )  and energy pumping annihilators and creators ( P : ,  P , ) .  It takes the form 

H = 2 w,a:a, +E fl ,b:6, + f?,P:P, +; 1 (Xa:a,b: +X*a,a:bA) +e (Abla: + A *b:a,) , I I i , / , k  1% I 

It has been recently demonstrated (Tuszynski et a1 1984), with a series of canonical 
transformations, that the effective Hamiltonian, in terms of the membrane dipoles, 
may be written as 

H:8, '=c Wka;'aA + 1 AAk ,a:+,a;-,akaL 
k k.A ,q  

where the Hamiltonian parameters are explicitly given (Tuszynski et a1 1984). The 
result of a symmetry breaking non-equilibrium transition in the system is the establish- 
ment of long-range dynamical order, non-zero electric polarisation and a Bose-like 
condensation of dipole oscillations. 
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2.9. The Davydor! model 

The Davydov model has recently been used as a basis for an investigation into the 
problem of energy transfer in one-dimensional molecular chains ( Davydov 1982). Here 
the relevant Hamiltonian may be expressed as 

H ' = C  hR,,a:,a,,+C hw,(b:b,+l)+ C x y m ( b ; + b  ,)aLa, ,  
m 4 4. I n  

where 0:  (b,)  are phonon ladder operators and a:, (a" , )  are exciton creators (annihi- 
lators). It has been demonstrated (Tuszynski 1986), using a unitary transformation 
that the effective Hamiltonian of the system can be written in the now familiar form 

+ +  HL= 1 ( E m H 8 m . n  + J m . n ) a " , a , + C  hwq(b:bq+',)+ C l m n y a n + y a , i - q a n , a n  
m, n Y m.n.4 

except that the first term in a:,an is not completely diagonal but can be made so by 
a suitable transformation. The two-body term constant Am,,, is defined by 

,Amnq =4X;,w5/[(nm -R,) ' -w5].  

The resultant behaviour of the system may, under special circumstances, be charac- 
terised by soliton formation, which is claimed to explain the almost lossless energy 
transfer in living systems. 

It is apparent from the examples we have given that a large number of diverse 
physical phenomena may be described by a single form of effective second quantised 
Hamiltonian, namely 

where the second quantised operators may obey either Fermi-Dirac or Bose-Einstein 
statistics with their attendant commutation relations. The details of the interaction 
coefficients in (14) are model dependent. Their symmetries depend on the properties 
of a general class of systems exemplified by the particular model, e.g. rotational 
symmetries, parity or time reversal of the operators which give rise to the terms in 
(14). Without loss of generality the first term of (14) can be made diagonal by unitary 
transformation. 

It is our  objective to investigate the prototype effective Hamiltonian in (14) making 
no specific assumptions about the strength of the interactions between the quasiparticles 
concerned. We shall be interested, in particular, in the vicinity of a symmetry breaking 
phenomenon and associated dynamical and  static structures which arise there. We 
have seen in the examples presented that seemingly unrelated physical effects (pairing, 
condensation, mode softening, coherence, solitons) can in fact be traced to a unified 
second-quantised formalism so it is of very great interest to study them in the above 
more general scheme. We shall be concerned not only with the critical point itself but 
the regime close to it which warrants the use of various expansion techniques around 
a variety of solutions to highly non-linear equations of motion. We first find the 
equations of motion of the q k ( q : )  operators in (14) using Heisenberg's equation. A 
field operator is then defined and the equations of motion rewritten in terms of this 
field. Our approach is to first seek exact classical solutions to these highly non-linear 
equations of motion. In  this procedure we will make full use of the recently published 
studies of Winternitz and  co-workers (Winternitz et ai 1987, Gagnon and  Winternitz 
1988a) which found exact solutions of the types of non-linear PDE that appear remark- 
ably in our study. The great value of their results lies in the fact that the solutions are 
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obtained non-trivially in multidimensional spacetime and  they possess exact symmetries 
of the original Hamiltonian. Subsequently semiclassical quantisation methods will be 
employed to obtain the internal excitation structure following the pioneering work of 
Jackiw (1977). This will provide us with the exact symmetries and  approximate forms 
of the coherent structures that result from spontaneous symmetry breaking occurring 
in this type of system. 

3. Derivation of the non-linear field equations 

We shall consider (14) as our model Hamiltonian for the class of systems described 
earlier. We take into account both Bose-Einstein commutation relations: 

[ q ; ,  q ; l - ' [ q k ,  q l l - - = O  [ q k ,  q ; ] - =  Sk.l  (15 )  

and Fermi-Dirac relations: 

[ q ;  3 q ; l +  = [ q k r  q l l +  = [ q k ,  q: l+ = S k , l .  (16) 

The next step is to use Heisenberg's equation of motion for a general operator A, namely 

ihd,A = -[H, A ] -  (17) 

where H is the Hamiltonian. The equations of motion for the Bose annihilator and 
creator are 

i f i d r q q  =c @ q . k q k +  c ( A q k m + A k q m ) q : q m q k + q - m  
k k. m 

(18) 
ifid&", = -2 w k , q q i  - ( A k m q  + A m k q ) q l q L q k + m - q  

k k.  m 

where the general Hamiltonian in  (14) has been used. Similarly for the Fermi-Dirac 
case 

We see that for bosons, interchange of q; and q;  in the two-body operator of (14) 
results in the operator remaining the same. Thus 

Aklm = A l k m  

for bosons. Similarly, for fermions Aklm = - A l k m ,  Hence, (18) for bosons and (19) for 
fermions may be written in identical form: 

iha,q; = -c w h , q q ;  - 2  A m k q q ; q : q k + m - q  * 
k.m 

In the standard way (Haken 1976) we define a quantum field operator $ by 

4 ( r )  = o- ' '~  C exp(-ik * r ) q h .  
k 

In  the context of critical phenomena the classical part of this field operator plays the 
role of an  order parameter, namely above the critical point the classical part vanishes 
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while below it is non-zero. We will demonstrate later that it provides an  effective 
potential for quantum excitations. Multiplying both sides of ( 2 0 a )  by exp(-iq r ) ,  
summing over 7 and dividing by the root volume R+"' we obtain 

1 x exp(ik r ) q ;  exp(-im * r ) q ,  exp[-i(k + q - m )  * r ]qk+q. -m 

The dispersion relation W,,k  is, of course, model dependent, but can always be 
chosen to  be diagonal using a unitary transformation. Our objective is to re-express 
( 2 2 )  using only field operators and  their derivatives. However, in general, the interaction 
coefficients 6 J q . k  and Aq+m-k,k ,m depend on k, q and m. Therefore, the simplest way 
to proceed is to Taylor expand these coefficients about some point in the space spanned 
by q, k and m. This 'point', in a nine-dimensional space, could be an arbitrary point 
and our analysis proceeds as if it were, but later it will be convenient to consider i t  to 
correspond to a local minimum of the Hamiltonian treated as a function of these 
momenta. In  fact, in the theory of critical phenomena ( M a  1976) i t  is common to use 
a plane wave representation for the order parameter (which may correspond to our 
quantum field $) and apply renormalisation group methods to find the so-called 'fixed 
point' of the model Hamiltonian as a particular value of the interaction parameters. 
Having found this point we could then minimise the Hamiltonian with respect to the 
momentum coordinates (or the field operator $ )  to obtain a local energy minimum. 
Suppose this corresponds to (q,,, k,, ,  m , ) ) .  If we could use these values of the momentum 
parameters as the expansion centre then we might expect the best convergence proper- 
ties for the expansion. 

For convenience and to simplify such an expansion, we define 

Thus, to all orders we have 

Similarly the interaction constant may be expanded in deviations from the expansion 
centre to give 

In ( 2 3 )  and  ( 2 4 )  the subscript 0 on both f and w means that the corresponding 
gradient(s) o f f  and  w is (are) to be evaluated at the centre of expansion (qokomo).  
For example, V k f  means i d , \ f + j d , , f +  ka,: f where i, j and k are unit vectors in the 
k,,  k ,  and k; directions, respectively, and ( V k f ) "  is the value of the gradient at 
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( qo, kO,  mo),  In the fifth term of (24) the ‘Cr are binomial coefficients and f o  indicates 
that the three partial gradients V,, V1, and V, are to operate only on f and then the 
net result is to be evaluated at (qO, k O ,  mo). I t  is easy to see that the first four terms 
of (24) correspond to s = 0 and s = 1 in the summation of the fifth term. To make the 
terminology clearer consider (23) and the term with s = 2 in the sum. This will be 
understood to mean 

where each derivative is evaluated at ( qokomo) and onfy second-order derivatives 
appear. 

Using (23) and (24) in (22) we give below the equations of motion up to second 
order in the Taylor expansions. For comparison we begin with the equation for the 
case of non-interacting particles, then consider two special cases, namely zeroth and 
first order with a non-zero interaction. Finally, we give the most general second-order 
expansion. 

3.1. Non-interacting particles 

Expanding u , , ~  to second order in q - qo and putting the interaction f = 0 we readily 
obtain 

where 

and 

( A , ) !  = -1 ~o,(a2771~,w)o+ (JW& 

(A.*) ,  = (J:,+40. 

J 

We have used the notation where ( x I x 2 x 3 )  E ( x ,  y ,  z )  and the summations run over 
i, j = 1 , 2 , 3 .  The last term in (25) is inconvenient in its present form so we apply a 
coordinate transformation a,f so that the new coordinates are xJ. This term becomes 
diagonal and the second term remains in the same form since it is a scalar product, 
i.e. xf + a,,x, and (A2), ,  becomes 

(A*),,%.a,i = Ski&,. 

Since ‘kh ( k  = 1 , 2 , 3 )  may have different magnitudes and signs we apply a subsequent 
scaling transformation, namely 

xi = X , / ( I A , I ) ” ~ .  
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Using the definition, V f  = 
dimensions, where E ,  ( i  = 1 , 2 , 3 )  are defined by 

E ,  = sgn( l\,) 

+ E 2 a f l  + E d f , ,  of a Laplace-Beltrami operator in three 

we recast ( 2 5 )  in the form 

where 

and v, = Ai) .  

which propagates in a dispersive medium. 
This is clearly in the form of a linear Schrodinger equation for the 'free' field $ 

3.2. Zeroth order 

Here we keep the same expansion of 6J,,k as in  5 3.1 but include now the zeroth-order 
or constant term, f ( q o ,  ko ,  mo),  from the interaction. Our field equation becomes 

ifia,$ = v,++iv, ( ~ , b ) - t T f + + ~ f ( q , ,  ko, mo)++++ (27) 

provided we perform the same transformations as in § 3.1.  This takes the form of the 
standard non-linear Schrodinger equation in Euclidean or Minkowski space provided 
the term in v I  is transformed away by an appropriate Galilean transformation. 
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and 

We show later in 5 3.4 that y5 = 0 and y 3  = y d .  

3.4. Second order 

In certain physical systems the first-order approximation is not expected to be sufficient 
since the interactions between the particles may be an  even function of the wavevectors 
and hence some of the first-order expansion coefficients vanish identically. Hence, it 
is important to retain only the first non-vanishing terms in the expansion but here, for 
completeness we include all first-order terms. This is a very tedious calculation but 
the result is given below for the reader to verify! 

i h d , 4 =  A o 4 + i A l  . ( C $ ) - i c  (Az) , ,d i , , ,++yz4+$4 
1, I 

+ n [ i ( C q f ) o  * $ + + ( v 4 ) + i ( Y m f ) o  * (L+(v$)$ - i ( Y k f ) O  - (T++)+$I 

Equation (30) is inconvenient to use since any symmetries which may be present 
are not immediately apparent. In order to simplify this equation we can apply a 
succession of coordinate transformations to obtain a canonical form. However, it is 
first necessary to use a symmetry of the various Aq+m-k ,k ,m to afford a marked sim- 
plification. In usual second-quantisation terminology these coefficients may be written 
as 

f( 11, k,  m = 2Aq + m - k, k.m = 2( 11 + m - k, v( r l  9 rZ) 1 77, m) (31) 

where each vector represents a set of quantum numbers and the integers in rounded 
brackets indicate that that particular state has as arguments the position vector of that 
particle, e.g. k ( 2 )  means that the state k has the position vector rz of particle 2 as its 
argument. 

It is clear from (31) that Aq+m-k,k,m is unchanged when particles 1 and  2 are 
interchanged, provided the interaction V (  rl , r z )  in configuration space is symmetric 
with respect to interchange of particle position vectors. That is 
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Using the definition o f f  (above (23) ) ,  this relationship reduces to 

f ( 7 7 , k , m ) = f ( m , 7 7 + m - k k , 7 7 ) .  (34) 

' k f  = o  ' ? f  = Y m , f  f 0 (35) 

By partially differentiating (341, it is now simple to demonstrate that 

where the subscript on the gradient indicates that the derivatives are with respect to 
the vector components. As a consequence of this symmetry y s  = 0 and  y7  = y4 in (29). 
Hence from (35) we have 

f = a i  , v i  f = a 2  m, f = o  ( M a )  

and  in general we have a different value for each pair i and j .  
Using these symmetries (30) becomes 

iha,$ =h ,$+iA,  ( C $ ) - i c  ( A d & , , $ +  r2$+$IL 
1.J 

+R[i(V,fjo - $+$(VIL)+i (V, f )o  - IL+(V$,)$ -i(Ck,f I o  P + ' ) + + I  
R +.IC (a~,,, ,f),{$+[-a5,y,$ -2i(a,,$)m:'+ $ m i " 3 4  

+ $+$[-a:,y,$ -2 i ( a .y ,$ )~7+  77:)71:)$1 

+2$+[(iaX,$ - m:'$)(ia,,$ - 71:$)1). 

' I. /  

(37) 

The cross derivatives in (37) make it very awkward for further calculations so we 
transform to a different set of coordinates to remove them. This is readily done as 
follows. Suppose the transformation is represented by the non-singular matrix a,, so 
that the new coordinates x, are related to the original ones xi by 

x, + f f  ,,XI. (38) 

a,, + ff,,a\,. (39) 

The derivatives then transform as 

We have three general tensorial types of terms of second rank in (37) which are of 
the form 

A 'J a t,.,, CL ( 4 0 ~ )  

2B, , (a , ,u (dyt$)  (4061 

- 8, (a:,,, 4 1. (40c) 
The transformation (39) is now applied to each expression in (40) in turn and the 

transformation is so chosen to make the terms in  (40c) diagonal, i.e. i ' = j ' ,  where the 
primed symbols are those appearing after the transformation. We thus obtain 

- Bt,fftha;i = a k b h  (41 1 
where the bk are the eigenvalues of the 3 x 3 matrix - B  = -( B,,). Obviously, this will 
also diagonalise the term in (406) since the coefficients of these two types of term are 
proportional. However, this cannot be said in general about the term in (40a). 
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In order to be able to use 0, and 0: symbols for the diagonalised terms in (40a, b )  
we may apply a subsequent scaling transformation, namely 

x:'= x : / ( l b , l ) '  ' (42) 

using the definition of a Laplace-Beltrami operator in three dimensions where the e,  
( i  = 1,2,3)  are defined by 

E ,  = sgn(b,). (43) 

It will be convenient to represent the term in (40a)  as a linear combination of a 
Laplace-Beltrami operator acting on 9 and remaining terms which do  not conform to 
the new signature in the transformed components of (40b) and (40c). However, this 
decomposition can be made in an arbitrary way but we wish to minimise the magnitude 
of the residual terms. Therefore, we shall use the following decomposition: 

A,,..Y(I,),,+[A,,-Y(I,),,l (44) 

where I, is a signatured identity matrix given by 

( I F  ) t J  = ' t 8 8 J  

and A is the transformed matrix A after rotation and scaling. The coefficient Y is to 
be chosen such that the residue matrix in the square brackets of (44) attains the 
minimum of its norm for a value of Y = p 2 .  Hence, we rewrite (44) as 

* 
A , , = p 2 ( I , ) , , + R , ,  

where - R I I  = A  r /  - P A I F ) , , .  

Thus, we can recast equation (37) in the form 

ifid14 = tL09+iCLI  * ~ ~ F 4 ) + P z ~ f s + c  R , , a ~ , ~ ~ 9 - 2 ( ~ ~ 9 + ) I C I ( ~ ~ 4 ) + p ~ I C I ~ 9 4  
r, 

+.i[4'9(C14'C,)ICI+IClt((ll4 * ~,)9,)4l+((~'flLt)44+ICI+9Vf9) (45) 

where po = A o ,  

and 

It is worth noting that, due to the last transformation in (42), the space of indepen- 
dent variables x, y ,  z may have arbitrary signatures, as is reflected in the use of the 
Laplace-Beltrami operator, and also in the use of generalised scalar products between 
gradients and vectors, i.e. 

( a  V ) F ~  = 1 &,a, a* /ax , .  
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However, all the possible cases may be convered by two generic cases, namely ( +  + +) 
and (+ + -) ;  all the other possibilities may be obtained through a sign reversal. The 
first possibility means that the space of independent variables is Euclidean while the 
second is a Minkowski-type space. This will have important repercussions on the 
solutions of the above field equations. 

The fourth term in (45) deserves further comment. This has been obtained from 
the third term in  (37) .  We have separated i t  from the third term of (45)  to consistently 
use the operators that reflect the signatures of the space of independent variables. 
However, in many important physical applications. e.g. for the electrostatic two-body 
Coulomb interaction, we expect the potential energy to be isotropic, which implies 
that b,  = b2 = b, and hence the matrix R,, would vanish identically. I n  any case, at the 
critical point 'i;~ = 0 and, once again, these apparently unsymmetrical terms become 
insignificant at or near a symmetry breaking point. In  the second part of the paper 
we will present a number of solutions to the equations of motion we have deriLed 
here. The solutions which will be presented pertain to the isotropic interaction case 
where we put R,, = O .  I f  this assumption should not be entirely justified, e.g. being at 
a finite distance from the expansion point, these terms then distort the symmetry and 
lead to charge or mass dissipation along preferential directions or else to rotational 
flows. In any of the cases where R,, is not negligible the method of solving the problem 
would be to perturb the isotropic solutions, assuming that the term in R,, is a small 
distortion. 

4. Summary and conclusions 

In this paper we haLe presented a number of important examples of condensed matter 
systems which can all be described using an effective Hamiltonian involving two-body 
interactions between quasiparticles. Our interest concentrated on the strong interaction 
regime which is often manifested by symmetry breaking effects, such a5 Cooper pair 
formation, Bose condensation, long-range coherence and soft mode behaviour. In 
order to investigate the prototype Hamiltonian we have used a non-perturbative 
approach where the Heisenberg equations o f  motion for ladder operators were trans- 
formed into highly non-linear P D E  for quantum field operators. This was accomplished 
through a Taylor expansion of the interaction coefficients. We have explicitly demon- 
strated the form of these equations up to second order. However, an infinite-order 
expansion, in principle, may easily be obtained. 

Our model Hamiltonian may be written in terms of the fields $* and (I, using a 
similar ansatz as we have employed for the equation of motion. This hould  result in 
the following types of terms. 

( i )  The one-body part of the Hamiltonian in equation (14) will yield four types of 
term: 

( a )  those which d o  not depend on any wavevector component having the form $'$; 
( b )  some components will be linear in a wavevector component k ,  and give rise 

to (d\(I ,+)$ and (I,+(d,G) and  similarly for other components and wavekectors; 
( c )  in the resulting expansion some parts which are proportional to k t  and produce 

(d:y(I,-)(I,, (d,G')(d,(I,), @ + ( a : , $ ) :  clearly, by changing the wavevector or component, 
similar terms of the same type will be obtained; 

( d  1 lastly, those contributions in the expansion involving two different wavevector 
components like k ,  and k ,  will lead to (d;,(I,+)(I,, (d , ( I ,+)(d\(I , ) ,  (d,(I,+)(d,(I,),  $-(at ,  (I,). 
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( i i )  The two-body part of the Hamiltonian can be analysed in the same way and 
also produces four groups of terms: 

( a )  4+ 4- 44 ; 

( b )  

( c )  

( a  \4 - ) 4' 48, B (a  ,4 148, 4 + 4 +(a ,4 ) 4, CL + 4 + 4 (a  \ 4 1 ; 
cat \ 4 - 4 + w, ( d  \8+ 1 ( a  ,4 - 188, (a  ,$ + 1 4+(a,4)4, 

( d ,9 * ) 4 CL ( a 1 41,B + ( t \ CL + 1 8$, (a 4 * 1 4 ' (a, 4 1 $4 
4 '(8 
$+$+(a:,$)$, 4+tb+(a \$) (a \$) ,  ( a V + - ) $ + 4 ( d Y $ L  

4'(d,4*)4(d,4), B '4+4(d,4) ;  
4 + 14 + 44, (a  \4 - 1 4 (a  14 1 8, 

(a, 4 + 1 (a  \$ * 1 44, 4 + ( a t , CL + 1 84, 4 ( a ,4 + 1 (a I 4 1 4, 

(d  ,4 + 1 4 +(a .4 1 4, 4 + (a , 4 + 1 (a ,4 1 CL, 4 + CL + (a', I 4 1 4, 
4+B+(d,$) (a, 4 1, 
(a,$+)$' 4 ( d X $ ) ,  4 + ( d I 4 + ) $ ( & $ ) ,  $+$+$(& 4).  

1 ( a  \ II, 18, 

( d )  

We have only selected k ,  and k ,  terms because these are representative of other 
wavevectors. This Hamiltonian would subsequently be subjected to symmetry require- 
ments imposed by the form of interactions present. Of particular interest would be 
the case of isotropic interactions which are expected to greatly reduce and simplify 
the number of terms. From the two ( a )  types nothing is changed, namely 4'4 and 
CL'S'$$. Those in type ( b )  will produce contributions like (7$+)8 ,  (C$')8'1+!4, 
$+(VI, !J+)~$ and their Hermitian conjugates. Components in ( c )  and  ( d )  will give rise 
to (V'$+)4, ( T @ )  * (C$), (V24+)8+B$ and all terms arising from the permutation of 
the Laplacian operator, (V4 '1  (G4+)44 with permutations in the positions of the 
two gradients. I t  is worth noting that a Landau-Ginzburg Hamiltonian density would 
be of the form 

HL,=a4+4+b~'8+CL~+cC9+ .CI+!I (46) 
which has played a very prominent role in the development of field theoretical 
approaches to critical phenomena (Amit 1978, Rajaraman 1987). It is apparent that 
our Hamiltonian will contain H,, as a special case. It is also evident that the quantum 
field 4 is analogous to the order parameter field used in generalised Landau-Ginzburg 
theories. The quantum nature of 4 is, at this stage, still manifest, provided the operators 
appearing are kept in their original order. We therefore see a further generalisation 
of Landau-Ginzburg concepts at criticality and also a direct link between microscopic 
and phenomenological approaches. 

Moreover, extensive analysis of the so-called '4" ' field theories using renormalisa- 
tion have been performed for which HLG is the model Hamiltonian (Amit 1978). Their 
conclusion is that a particular 4' model is renormalisable when the number of 
independent space (or spacetime) variables N ,  is given by 

2 n  
N,=- 

n - 2 '  

Therefore, the 44 model of IfLc, is renormalisable when N ,  = 4 while an  analogous d 6  
model is renormalisable when N ,  = 3. These two particular examples are also important 
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as prototypes of second-order and first-order phase transitions, respectively. Using 
the language of catastrophe theory, the former (44) exhibits a 'cusp' catastrophe 
whereas the latter a 'butterfly' castastrophe (Poston and  Stewart 1978). For a particular 
4'' theory, higher powers are called irrelevant operators since they can, at most, affect 
critical amplitudes but not critical exponents. An important link between these general 
statements and  our second-order study could be obtained by setting V$ = g( 4 )  for the 
solutions of our equation of motion. With a polynomial expansion of the a priori 
arbitrary vector function g our second-order result embraces both the d4 and q56 
phenomena and this is sufficiently general, because of renormalisation theorems, to 
effectively ignore higher-order corrections. The latter can, at best, modify the para- 
meters of our second-order theory, but will not affect in any way the symmetries and  
topologies of the system under examination. Thus, our general equations for the field 
$, for the isotropic case, are exact in form and may describe an enormous range of 
physical phenomena. 

Obviously, it is imperative to provide, at least special solutions of the equations of 
motion which we have derived for this model to be useful. This is, in fact, the objective 
for part I1 of this paper. We shall make full use of recent studies carried out on just 
this type of equation. The method employed is the very powerful symmetry reduction 
method for PDE, which makes full use of continuous symmetries (Winternitz er a1 1987, 
Gagnon and  Winternitz 1988a, b, 1989a, b). This, of course, requires or implies that 
we treat the field operator, at least initially, as a classical dependent variable. Quantum 
corrections are subsequently accounted for through various well known semiclassical 
quantisation approaches (Jackiw 1977, Rajaraman 1987). The result of applying this 
method is, first of all, a classical coherent structure (Klauder and  Skagerstam 1985) 
which is localised in space and  elementary quantum excitations whose spectrum we 
wish to study. The classical solution acts as an effective potential for the elementary 
excitations whose nature therefore reflects the symmetries of the coherent structure. 
The fact that an  effective one-body-like potential exists is supported by the excellent 
results obtained, for example, from density functional approaches (Hohenberg and  
Kohn 1964, Kohn and Sham 1965, Kohn 1986). 
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